MAP estimators for piecewise continuous inversion
نویسنده
چکیده
Abstract We study the inverse problem of estimating a field u from data comprising a finite set of nonlinear functionals of u, subject to additive noise; we denote this observed data by y. Our interest is in the reconstruction of piecewise continuous fields u in which the discontinuity set is described by a finite number of geometric parameters a. Natural applications include groundwater flow and electrical impedance tomography. We take a Bayesian approach, placing a prior distribution on u and determining the conditional distribution on u given the data y. It is then natural to study maximum a posterior (MAP) estimators. Recently (Dashti et al 2013 Inverse Problems 29 095017) it has been shown that MAP estimators can be characterised as minimisers of a generalised Onsager–Machlup functional, in the case where the prior measure is a Gaussian random field. We extend this theory to a more general class of prior distributions which allows for piecewise continuous fields. Specifically, the prior field is assumed to be piecewise Gaussian with random interfaces between the different Gaussians defined by a finite number of parameters. We also make connections with recent work on MAP estimators for linear problems and possibly non-Gaussian priors (Helin and Burger 2015 Inverse Problems 31 085009) which employs the notion of Fomin derivative. In showing applicability of our theory we focus on the groundwater flow and EIT models, though the theory holds more generally. Numerical experiments are implemented for the groundwater flow model, demonstrating the feasibility of determining MAP estimators for these piecewise continuous models, but also that the geometric formulation can lead to multiple nearby (local) MAP estimators. We relate these MAP estimators to the behaviour of output from Inverse Problems
منابع مشابه
Functional parameterization for hydraulic conductivity inversion with uncertainty quantification
Functional inversion based on local approximate solutions (LAS) is developed for steady-state flow in heterogeneous aquifers. The method employs a set of LAS of flow to impose spatial continuity of hydraulic head and Darcy fluxes in the solution domain, which are conditioned to limited measurements. Hydraulic conductivity is first parameterized as piecewise continuous, which requires the additi...
متن کاملEnlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise
This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...
متن کاملUniqueness of Parry Maps, and Invariants for Transitive Piecewise Monotonic Maps
Parry showed that every continuous transitive piecewise monotonic map τ of the interval is conjugate (by an order preserving homeomorphism) to a uniformly piecewise linear map T (i.e., one with slopes ±s). In the current article, it is shown that the map T is unique. This is proven by showing that any order-preserving conjugacy between two continuous transitive uniformly piecewise linear maps i...
متن کاملSemiconjugacy to a Map of a Constant Slope
It is well known that a continuous piecewise monotone interval map with positive topological entropy is semiconjugate to a map of a constant slope and the same entropy, and if it is additionally transitive then this semiconjugacy is actually a conjugacy. We generalize this result to piecewise continuous piecewise monotone interval maps, and as a consequence, get it also for piecewise monotone g...
متن کاملRoots of Continuous Piecewise Monotone Maps of an Interval
We shall consider slightly more general problems. Namely, we shall investigate the existence of continuous: piecewise monotone, piecewise strictly monotone, and piecewise linear n-th roots of interval maps which have a continuous n-th root. Here by an n-th root of f we mean a map g such that f = g (g is the n-th iterate of g). A continuous map f : I → J , where I, J are closed intervals, is pie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016